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Abstract
The uniformity, for the family of exceptional Lie algebras g, of the
decompositions of the powers of their adjoint representations is now well known
for powers up to four. The paper describes an extension of this uniformity
for the totally antisymmetrized nth powers up to n = 9, identifying (see
tables 3 and 6) families of representations with integer eigenvalues 5, . . . , 9
for the quadratic Casimir operator, in each case providing a formula (see
equations (11)–(15)) for the dimensions of the representations in the family as
a function of D = dim g. This generalizes previous results for powers j and
Casimir eigenvalues j, j � 4. Many intriguing, perhaps puzzling, features of
the dimension formulae are discussed and the possibility that they may be valid
for a wider class of not necessarily simple Lie algebras is considered.

PACS numbers: 02.20.Sv, 02.20.−a

1. Introduction

After noting some conventions in section 1.1, we describe quite carefully the context of this
paper in section 1.2. This enables us to indicate briefly in section 1.3 the scope of this paper,
and highlight the new results it obtains.

1.1. Notation and conventions

We are concerned with simple complex Lie algebras g and with their irreducible
representations. Irreducibility is understood over the field of complex numbers. We note
that we use the informal abbreviation irrep for irreducible representation.
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We focus, in particular, on the family of

F = {a1, a2, g2, d4, f4, e6, e7, e8} (1)

of simple Lie algebras. They feature in the extension of the last line of the Freudenthal magic
square [1] that is given in [2]. These algebras are well known to form a family in some
profound sense whose ramifications probably have not yet been fully exhausted.

Our work depends heavily on access to a large body of data for the Lie algebras g,
especially lists for the exceptional Lie algebras of irreducible representations R classified
by highest weights which give the corresponding dimension and eigenvalue c(2)(R) of the
quadratic Casimir operator C(2)(R). We have created a C++ program to provide this and
related information given the Cartan matrix as the only input. We also note that valuable
general sources of data regarding Lie algebras are available, e.g., [3, 4].

We use a normalization in which c(2)(g) = 1 for the adjoint representation and therefore
c(2)(R) = 〈�R,�R + 2δ〉 where �R denotes the highest weight of R, δ is the half-sum of
positive roots of g and 〈·, ·〉 denotes the Cartan–Killing form on the space of weights.

We refer to irreps here often by their dimension because our studies are concerned with
dimension formulae for families of representations of Lie algebras g. When we need to refer
to irreps by their highest weight or Dynkin coordinate specification, we adopt the conventions
that follow from the Cartan matrices of g used by [3–5]. We also often omit commas between
the coordinates, here always integers less than ten.

The diagram automorphisms of the algebras g ∈ F are Z2 for a2 and e6, S3 for d4, and
the trivial group for all the others. As the adjoint irrep ad is always mapped to itself under
diagram automorphisms, the constituents of the complete decomposition of its tensor powers
ad⊗j are either self-conjugate or pairs of complex conjugate irreps for a2 and e6. For d4, the
constituents are either irreps that are stable under triality or triples and sextuples of irreps that
are related by triality.

1.2. Background material

The first property of the family F to be noted concerns the structure of ad ⊗ ad . We write
this as

ad ⊗ ad = (ad ⊗ ad)A ⊕ (ad ⊗ ad)S. (2)

For the antisymmetric piece we have a universal result, i.e. one that is valid for each simple
compact g,

(ad ⊗ ad)A = ad ⊕ X2 (3)

where X2 denotes a representation of g of dimension

dim X2 = 1
2D(D − 3) (4)

where D = dim g. For a2,X2 is the representation 20 = 10 + 10 = (3, 0) ⊕ (0, 3), a pair of
conjugate irreps. For the exceptional Lie algebras, see table 1.

A universal and an important property of the family of irreps X2 is the result

c(2)(X2) = 2. (5)

It is of special relevance to the work described here, because families Xj with

c(2)(Xj ) = j (6)

for j � 4 are known to appear in the jth antisymmetric tensor power of ad , and we extend
this knowledge beyond j = 4 here.
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Table 1. Irreps of g for ad ⊗ ad.

g2 f4 e6 e7 e8

ad 14 52 78 133 248
(10) (1000) (000001) (1000000) (00000010)

X2 77′ 1274 2925 8645 30380
(03) (0100) (001000) (0100000) (00000100)

R1 1 1 1 1 1
R2 27 324 650 1539 3875

(02) (0002) (100010) (0000100) (10000000)

R3 77 1053 2430 7371 27000
(20) (2000) (000002) (2000000) (00000020)

Table 2. The complete reduction of the representations X3 and X4 of g ∈ F in Dynkin coordinates
and the results d3(dim g) and d4(dim g) of the dimension formulae (9) and (10).

a1 a2 g2 d4 f4 e6 e7 e8

d3 −5 0 182 3 · 840 19448 70070 365750 2450240

X3 (4) – (04)

(0022)

⊕(2002)

⊕(2020)

(0020) (010100) (0010000) (00001000)

d4 0 −35 − 35 0 3 · 3675 205751 2 · 600600 11316305 146325270

X4 – (14) ⊕ (41) –
(1013)

⊕(1031)

⊕(3011)

(0021)
(020010)

⊕(100200)
(0001001) (00010000)

The result corresponding to (3) for the symmetric piece of ad ⊗ ad is not universal, but
for each g ∈ F we have a result of the form

(ad ⊗ ad)S = R1 ⊕ R2 ⊕ R3 (7)

defining three families of irreps as given in table 1.
These families enjoy a variety of nice properties: for each family we have single formulae

for the dimension and for the C(2) eigenvalue of its members as a function of D = dim g. We
do not need these details here. As far as we can determine, the first full explicit analysis of
ad ⊗ ad appears in [6].

The analysis just discussed for ad ⊗ ad gives rise to a natural conjecture—the Deligne
conjecture [7]—that the jth tensor powers of ad for the exceptionals possess uniform
decompositions into irreps. That this does indeed happen, defining further families of irreps,
has been comprehensively confirmed by algebraic computation in [8], using [9], for j = 3, 4
and established independently of computational procedures in [10].

We do not review this in full, but note, for j = 3, only the result

ad∧3 = (ad ⊗ ad ⊗ ad)A = ad ⊕ R2 ⊕ R3 ⊕ X2 ⊕ X3 (8)

valid for all g ∈ F . The important fact here is that (8) defines only one new family beyond
those already understood from the study of ad ⊗ ad which we denote by X3 (table 2). The
irreps involved here possess two notable properties, natural analogues of (4) and (5). Their
dimension is given by a polynomial in D,

d3(D) = 1
3!D(D − 1)(D − 8) (9)
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and equation (6) holds. The factor D − 8 in (9) reflects the fact that a2 has no irrep with
c(2) = 3 and hence no member in the X3 family. For a1, the structure of (8) also collapses, and
there is no representation with c(2) = 3 in ad∧3 either. However, for D = 3, the dimension
formula (9) gives the answer −5, and a1 does indeed have a representation of dimension 5
with c(2) = 3 which is, however, not contained in ad∧3. No systematic understanding has been
obtained of why negative values of the dimension formula are often seen to happen and seem
to make some sort of sense. More examples follow in our work for j = 5, . . . , 9. Finally, we
remark that the three irreps that occur for d4 (table 2) are related by diagram automorphisms.

Next we note that analysis of ad∧4 brings into the discussion only one further family of
representations beyond those that were mastered within the discussion (not reviewed here, but
see [8]) of ad⊗3. We denote this family as X4 (table 2).

The two irreps, (100200) and (020010), that are listed for e6 are related by diagram
automorphisms as are (0022), (2002) and (2020), for d4. The dimension formula

d4(D) = 1
4!D(D − 1)(D − 3)(D − 14) (10)

already indicates that a1 and g2 have no member in the X4 family. Indeed, there do not
exist any irreps of a1 and g2 with c(2) = 4. For a2 we have again the phenomenon that
(10) gives a negative result, here −70. Indeed, a2 has got exactly one pair of conjugate
irreps with c(2) = 4 which have dimension 35 + 35. For all irreps listed in table 2, (6) is
satisfied.

The dimension formulae given here in (4), (9) and (10) are equivalent to the results given
in [7, 8], where other parametrizations of family properties are used: see section 1.4. The c(2)

eigenvalues can also be found in these sources.

1.3. Summary of new results

We now turn to the problem of extending uniformity properties for g ∈ F in the case of
ad⊗5, . . . , ad⊗9. A systematic extension would seem to entail massive computational effort,
but confirmation that the nice picture known for j � 4 does not stop at j = 4 can be provided.

Looking at ad∧j for j = 2, 3, 4 motivates easy but compelling conjectures. It is natural
to expect that there exist, for higher j values, identifiable families Xj of representations of
g ∈ F occurring in the decomposition of ad∧j , that they satisfy (6) and that nice dimension
formulae exist.

The purpose of this paper then is to attain such knowledge by confrontation of the cases
of j = 5, . . . , 9. In fact we are able to provide an identification of the members of families
X5, . . . , X9 of representations of g ∈ F that satisfy (6) and establish the dimension formulae

d5(D) = 1
5!D(D − 3)(D − 6)(D2 − 21D + 8) (11)

d6(D) = 1
6!D(D − 1)(D − 10)(D3 − 34D2 + 181D − 144) (12)

d7(D) = 1
7!D(D − 2)(D − 3)(D − 8)(D3 − 50D2 + 529D − 120) (13)

d8(D) = 1
8!D(D − 1)(D − 3)(D − 6)(D4 − 74D3 + 1571D2 − 9994D + 4200) (14)

d9(D) = 1
9!D(D − 1)(D − 3)(D − 4)(D − 14)(D − 26)(D3 − 60D2 + 491D − 120). (15)

We display information in tables 3 and 6 that describe in full the assignments of representations
for the members of the families X5, . . . , X9 for all Lie algebras g ∈ F . There are various
features of these results that need, and will receive, consideration.

1. The occurrence of the quadratic, cubic and quartic polynomials in (11)–(15) which do not
have rational factors.
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Table 3. Irreps related to (11).

a1 a2 g2 d4 f4 e6 e7 e8

d5 0 −64 −924
3 · 3696
+15092

629356
+952952

2 · 1559376
+12514788

163601438
+109120648

6899079264

X5 – (33) (14)

(0104)

⊕(0140)

⊕(4100)

⊕(2022)

(0030)

⊕(0103)

(030000)

⊕(000300)

⊕(110110)

(0000102)

⊕(0002000)
(00100000)

Table 4. Parameters D,m and α. See (16) and the text for details.

a1 a2 g2 d4 f4 e6 e7 e8

D = dim g 3 8 14 28 52 78 133 248

α 1
2

1
3

1
4

1
6

1
9

1
12

1
18

1
30

m − 4
3 −1 − 2

3 0 1 2 4 8

2. The status of the table entries for dj for each g when j exceeds the first j -value j0 for
which dj is not positive. For a2, g2, d4, f4 we have4 j0 = 3, 4, 7, 10.

3. The appearance of direct sums of several irreducible representations that are not related
by diagram automorphisms. This feature is new compared with the results of [8].

4. The occurrence of negative values of the dimension formulae (11)–(15).
5. The fact that the dimension formulae (11)–(15) give integer results for any integral D.
6. The question of whether these patterns extend beyond the members of the family F .

The ensuing material is organized as follows. For comparison with the work of others in
section 1.4, we mention parametrizations alternative to D = dim g. In section 2, we explain
our construction of the dimension formulae (11)–(15). Section 3 then poses the obvious
question: are the results discussed here for g ∈ F universal? The results for j = 2 are
well known to be universal in that they apply, not only to g ∈ F , but also to all simple g.
To what extent, if any, does a similar statement hold for higher j? We are unable to give a
systematic algebraic analysis of the situation, but can easily gain some insight into it, by giving
an empirical analysis of the cases of the simple Lie algebras b2, b3, c3, a3, . . . , a5. Further
insight, partially motivated by the appearance of D − 6 factors in d5(D) and d8(D), comes
from the study in section 4 of the cases of a1⊕a1, and the corresponding threefold and fourfold
direct sum. Section 5 contains a conclusion and a list of the most obvious open questions.

1.4. Alternative parametrizations

In general in our work, we prefer to give formulae for the dimensions and the quadratic Casimir
eigenvalues of members of a family of irreps of the Lie algebras in F as a function of the single
parameter D = dim g, but other parameters are used in the literature. To aid comparison of
our discussion with related work in other sources, we have drawn up table 4.

The parameter α is used in [7, 8], while m is used in [10, 12]. The relation between the
different parameters can be obtained from

D = 2(3m + 7)(5m + 8)

m + 4

1

α
= 3(m + 2) = h∨ (16)

4 These numbers are related to the highest integer j for which ad∧j contains a Casimir eigenspace of eigenvalue
j [11].
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Table 5. The highest positive roots xj of f4 in terms of the simple roots αj and their height.

Root α1 α2 α3 α4 Height

x24 2 3 4 2 11
x23 1 3 4 2 10
x22 1 2 4 2 9
x21 1 2 3 2 8
x20 1 2 3 1 7
x19 1 2 2 2 7
x18 1 2 2 1 6
x17 1 1 2 2 6
x16 0 1 2 2 5
x15 1 1 2 1 5
x14 1 2 2 0 5
.
.
.

.

.

.

where h∨ is the dual Coxeter number (p 37 of [3]). Also α is related to the eigenvalue of the
Casimir operator of the members of the R3 family

c(2)(R3) = 2(1 + α). (17)
For the exceptional algebras in the last line of the Freudenthal magic square, the m values in
table 4 have this interpretation: the division algebra used in their Freudenthal construction has
dimension m.

2. The dimension formulae

In the study of ad∧j up to j = 4 [8] it was sufficient to identify the irreducible component of
the highest weight in the antisymmetric power ad∧j and then to determine the direct sum Xj of
all irreps that can be obtained from the former by the application of diagram automorphisms.
The dimension formulae (9) and (10) then agree with the interpolation polynomial for which
dj (dim g) = dim Xj for all algebras g ∈ F for which the corresponding Xj satisfies (6). In
our notation, it is already a non-trivial fact that a polynomial in D = dim g is sufficient to
parametrize the relevant dimensions for all algebras g ∈ F .

At j = 5, however, the same strategy does not result in any simple dimension formula at
all. The solution is to modify the strategy and choose Xj to be the entire Casimir eigenspace
of ad∧j , i.e. the maximal Xj that satisfies (6) or, if there is no non-trivial subspace with this
property when the algebra g has dropped out of the full picture, to choose a suitable direct
sum of (other) irreps of g that satisfy (6). We have arrived at this result purely empirically,
searching for simple and in particular polynomial dimension formulae, and we have found the
following rule5 which characterizes the direct summands of Xj .

The rule specifies how to select j distinct roots of g whose sum is the highest weight of
an irrep that is contained in ad∧j . Whenever it happens that an algebra g has not yet dropped
out of the full picture (as explained above), the rule finds all irreps that both occur in ad∧j and
have c(2) = j . If the algebra has dropped out, the rule finds some other irreps in ad∧j .

We explain the procedure for f4 whose roots are given in table 5. Consider the root lattice
of f4, drawn as a directed graph in figure 1. The vertices correspond to the roots xk and are
numbered as in the table. There is a directed arrow from xk to x�, denoted by a pair (xk, x�),
if and only if x� = xk + α for some simple root α.
5 We thank J Landsberg for bringing the article [13] to our attention in which the Casimir j eigenspace of ad∧j is
characterized by an algebraic condition equivalent to the rule we state here.
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16 13 10

24 23 22 21

11 8

15 12

14
· · ·

· · ·

9
· · ·

19

20 18

17

Figure 1. A part of the root lattice of f4 as a directed graph. The vertices correspond to the roots
xk and are numbered as in table 5.

Let X = {x1, x2, . . .} denote the set of all roots. For j = 1, 2, . . . consider subsets S ⊂ X

of cardinality |S| = j . A subset S is called admissible if for each x ∈ S and each arrow (x, y)

in the graph, we also have y ∈ S.
Observe that in the f4 example, the highest root x24 is contained in any non-empty

admissible subset. Similarly, the second highest root x23 is contained in any admissible set of
cardinality at least 2, and so on.

Observation. Given an admissible subset S, |S| = j , the weight

w :=
∑
x∈S

x (18)

is the highest weight of an irrep of g which is contained in ad∧j . Any irrep of c(2) = j that
occurs in ad∧j can be found from this rule.

Given the root lattices of the algebras g ∈ F , we can use this rule in order to obtain a list
of all irreps that are both contained in ad∧j and also have c(2) = j . This information forms
the basis for the higher dimension formulae.

A point for d4 regarding admissible sets is worth noting. For d4, d4(28) = 3 · 3675
involving a triple of irreps with c(2) = 4 which occur in ad∧4. But d4 also has 1925 = (0300)

with c(2) = 4 which is not part of ad∧4. If we examine the admissible sets for d4 at j = 4, we
can finds sets for the 3675-dimensional irreps, but not for 1925.

We obtain the dimension formula (11),

d5(D) = 1
5!D(D − 3)(D − 6)(D2 − 21D + 8) (19)

as the interpolation polynomial using the data for six algebras of the family F from table 3.
If we hoped that the right-hand side of (19) is the product of factors linear in D, such

as the formula for dj (D) for lower j , then we would have been disappointed. However, the
expectation was based on viewing these formulae, as in [10], in relation to the Weyl formula
for the dimensions of irreps of Lie algebras, and that view is valid as long as the families Xj

involve only irreps (up to diagram automorphisms), i.e. for j � 4. But it is not valid for j = 5
and the assignments for X5 already made, and so the basis for the hope has gone.

In case it might be thought that the use of the parameter m in table 4 might improve the
status of (19), we note that (16) implies

D2 − 21D + 8 = 6(15m2 + 67m + 68)(10m2 + 27m + 28)

(m + 4)2
(20)

in which each one of the quadratic expressions in view has discriminant 409 and does not have
rational factors.

The dimension formula (19) gives negative values for a2 and g2 (table 3), which in each
case refer to the unique irrep of the Lie algebra in question with c(2) = 5.
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Although it would not be correct to assign 924 of g2 to X5, since it does not occur in the
decomposition for g2 of ad∧5, the situation is similar to that found for a2 at the previous stage:
we found that there is no proper member of the X4 family for a2, but one with the correct
value of c(2) and the negative of the correct dimension. Such things are prevalent also in the
work of [7] and [8], but not explained.

As one goes to higher j in an effort to carry the search for families and for dimension
formulae for them further, one expects more and more algebras to drop out of the full picture
much in the way that a2 did beyond j = 2 and g2 did beyond j = 3. This will happen just
because dim ad∧j eventually becomes too small to contain any irrep of c(2) = j . We also
expect that for Lie algebras that have dropped out of the full picture, i.e. out of correctly
assigning members to families, use of dimension formulae will continue to yield in modulus
representations carrying the correct Casimir eigenvalue for the family in question.

As we are looking for a dimension formula dj (D) which is a polynomial of degree j in
D, we need j + 1 Lie algebras to fix its coefficients and then another Lie algebra in order to
confirm that the dimension formula contains non-trivial information.

Table 6 shows the values dj (D) of the dimension formulae (12)–(15), j = 6, . . . , 9, and
the assignment of representations Xj . For a1, d6 = −7 and the seven-dimensional irrep of a1

has c(2) = 6, but d7 = d8 = d9 = 0 as expected.
For j = 6, 7, we have obtained the dimension formulae (11) and (12) as the interpolation

polynomial for the eight values dj (D) where D = dim g for the eight Lie algebras g ∈ F .
Whenever ad∧j contains irreps of c(2) = j , then we choose Xj to be their direct sum and
dj (dim g) = dim Xj . Whenever ad∧j does not contain any irreps of c(2) = j , so that g has
dropped out of the full picture, then dj (dim g) is the sum or difference of the dimensions of
all irreps of g with c(2) = j . In this case, the signs of the summands are chosen by trial
and error so that we obtain a ‘simple’ dimension formula, i.e. one which has as many linear
factors as possible, which has only ‘small’ coefficients and for which dj (D) is an integer for
any integral D. By experimentation with these interpolations, we always find a unique choice
of signs which dramatically, absolutely dramatically, simplifies the interpolation polynomial.

For j = 7, it is of course a trivial fact that we can use the data of eight algebras in order
to uniquely fix a polynomial dj (D) of degree 7. The simplicity of the resulting formula (13)
is, however, a highly non-trivial property.

Comparing the dimension formulae (10)–(13), the following general pattern emerges: we
have dj (0) = 0, and the leading term is 1

j ! D
j . For j = 8, we now assume these two conditions

and can therefore determine a polynomial of degree 8 from only seven additional data points.
We employ all algebras g ∈ F except for d4 and obtain (14).

For d4, we discover the following exception from the rules stated so far. The dimension
formula (14) yields d8(28) = −554400. There exist indeed representations of d4 with c(2) = 8,
namely (0106) ⊕ (0160) ⊕ (6100) of dimension 3 · 15015 and (1213) ⊕ (1231) ⊕ (3211) of
dimension 3 · 169785, and indeed d8(28) is the negative sum of their dimensions. However,
d4 has got further representations with c(2) = 8 that do not play any role in the dimension
formula d8(D), namely (0044) ⊕ (4004) ⊕ (4040) with dimension 3 · 35035.

For j = 9, we again assume the two conditions and determine a polynomial of degree 9
from eight data points, making use of all eight algebras g ∈ F .

3. Dimension formulae for simple g not in F

The formulae (4), (9), (10), (11)–(15) have been derived and discussed in the context of the
extended family F of simple Lie algebras g that include the exceptionals.
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Table 6. Irreps related to (12)–(15).

a2 g2 d4 f4 e6 e7 e8

d6
28
+28

−1547 3 · 1386
7113106
+1850212

2 · 47783736
+64205141

4260501784
+1063409347

267413986840

X6
(06)

⊕(60)
(23)

(0006)

⊕(0060)

⊕(6000)

(0112)

⊕(1005)

(120100)

⊕(010210)

⊕(201020)

(0001101)

⊕(0000013)
(01000001)

d7 0
1254
−748

−3 · 23400
−114400

1264120
+19214624
+15997696

2 · 466237200
+221077350
+152423700

2457458575
+44406104600
+39557939200

5006235840320
+3754721200320

X7 –
(07),

(40)

(0204)

⊕(0240)

⊕(4200)

⊕(2122)

(0007)

⊕(1014)

⊕(0202)

(101120)

⊕(211010)

⊕(020200)

⊕(300031)

(0000004)

⊕(0001012)

⊕(0010200)

(10000002)

⊕(02000000)

d8 −125 3003
−3 · 15015
−3 · 169785

65609375
+15611882
+13530946

3863940795
+2 · 764156250
+2 · 1533061530
+133024320

135058673750
+848520798125
+204501797500

35361935272950
+212182409960235

X8 (44) (16)

(0106)

⊕(0160)

⊕(6100)

⊕(1213)

⊕(1231)

⊕(3211)

(1104)

⊕(0016)

⊕(0300)

(111110)

⊕(002030)

⊕(302000)

⊕(200131)

⊕(310021)

⊕(400040)

(0001003)

⊕(0010111)

⊕(0100300)

(00000003)

⊕(11000001)

d9
80
+80

0
−3 · 215600
+245700

64194312

2 · 1621233900
+2 · 5284021600
+2 · 7587880300
+16162889600

3581756027850
+3334268437500
+6557368727910
+539884745400

2624940724551600
+3500209714601600

X9
(17)

⊕(71)
–

(0322)

⊕(2302)

⊕(2320),

(3033)

(0106)

(300140)

⊕(410030)

⊕(101041)

⊕(401011)

⊕(012020)

⊕(202100)

⊕(210121)

(0010102)

⊕(0020020)

⊕(0100211)

⊕(1000400)

(01000002)

⊕(20100000)

It is known, however, that (4) is universal: a well-defined representation X2 of each simple
g has its dimension given by (4) and the eigenvalue c(2)(X2) = 2 of its quadratic Casimir
operator. It is natural to ask if the other dimension formulae (9), (10), (11)–(15) are likewise
universal, and, if not, what, if anything, they can tell us for g /∈ F .

No systematic algebraic approach is available, but a large body of data can readily be
assembled, e.g., using our programs, MAPLE, and references such as [4, 5]. Some indication
of the limitations, if any, of the applicability of (9)–(15) to g /∈ F can certainly be gained by
reference to the cases of b2 (∼=c2), b3, c3, a3, . . . , a5.

The entries of table 7 for each g and each Xj show representations of g—often direct
sums of irreps—all with the c(2)(Xj ) = j . The dimension formulae dj (D), D = dim g, yield
sums or differences of the dimensions of the irreducible components of Xj . Note that the
feature that dj (D) gives a difference of the dimensions of irreps was, for g2, first encountered
at j = 7.
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Table 7. The dimension formulae dj (D) for some algebras gand the corresponding representations
Xj in highest weight notation.

b2 b3 c3 a3 a4 a5

d2 35 189 189 45 + 45 126 + 126 280 + 280

X2 (12) (102) (210)
(210)

⊕(012)
(2010) ⊕ (0102) (20010) ⊕ (01002)

d3 30
294
+616

385
+525

35 + 35
+175

1024
+224 + 224

3675
+840 + 840

X3 (30)
(004)

⊕(202)

(030)

⊕(301)

(400)

⊕(004)

⊕(121)

(1111)

⊕(3010) ⊕ (0103)

(11011)

⊕(30100) ⊕ (00103)

d4 −105
1386
+819

2205 105
1701 + 1701
+1176
+126 + 126

12250 + 12250
+6720

+1050 + 1050

X4 (14)
(104)

⊕(310)
(121) (040)

(2201) ⊕ (1022)

⊕(0220)

⊕(5000) ⊕ (0005)

(21101) ⊕ (10112)

⊕(02020)

⊕(41000) ⊕ (00014)

d5
−84
−154

378
2457
−2079

−189
−189
−729

3024
+3024

36750 + 36750
+34496
+12936 + 12936
+462 + 462

X5
(06)

⊕(32)
(500)

(022),

(501)

(501)

⊕(105)

⊕(222)

(1310)

⊕(0131)

(01121) ⊕ (12110)

⊕(20202)

⊕(32001) ⊕ (10023)

⊕(60000) ⊕ (00006)

d6 –
−9009
−4312

−11319
−3003
+1001

−735
−875

−875

−8624 − 8624
−924 − 924
+1176 + 1176

169785
+43120 + 43120

+25200 + 25200

X6 –
(114)

⊕(320)

(321),

(610),

(004)

(141)

⊕(412)

⊕(214)

(3202) ⊕ (2023)

⊕(6001) ⊕ (1006)

⊕(0500) ⊕ (0050)

(11211)

⊕(23010) ⊕ (01032)

⊕(03200) ⊕ (00230)

If we extend table 7 to b4 and c4, we encounter at j = 5 the same exception from the rules
that we have already seen for d4 at j = 8, namely that the algebra has already dropped out of
the full picture (as explained above), and there exist many irreps with c(2) = j only some of
which are relevant for the dimension formula.

It is a striking observation that all the simple Lie algebras of table 7 fit into the general
pattern. In particular, the fact that b2 does not have any irrep of c(2) = 6 can be seen as an
‘explanation’ of the linear factor D − 10 in (12). It is then a natural question to ask which
are the Lie algebras of dimensions 1, 2, 4, 6 and 26 that cause the other integer roots of the
dimension formulae (11)–(15).

4. Some further studies

4.1. The factor (D − 6) in d5(D) and d8(D)

To account for the presence of the factors (D−6), consider the case of g = a1 ⊕a1, employing
the Cartan matrix

A =
(

2 0
0 2

)
(21)
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Table 8. Data for a1 ⊕ a1.

c(2) = n Irreps dn(6)

1 (2, 0) ⊕ (0, 2) 6
2 (2, 2) 9
3 (4, 0) ⊕ (0, 4) −10
4 (4, 2) ⊕ (2, 4) −30
5 None 0
6 (6, 0) ⊕ (0, 6), (4, 4) 11
7 (6, 2) ⊕ (2, 6) −42
8 None 0
9 (6, 4) ⊕ (4, 6) 70

Table 9. Data for a1 ⊕ a1 ⊕ a1.

c(2) = n Irreps dn(9)

3 (2, 2, 2), 3 · (4, 0, 0) 12 = 27 − 3 · 5
4 6 · (4, 2, 0) −90 = −6 · 15
5 3 · (4, 2, 2) −135 = −3 · 45
6 3 · (4, 4, 0), 3 · (6, 0, 0) 54 = 3 · 25 − 3 · 7
7 6 · (6, 2, 0), 3 · (4, 4, 2) 3 · 75 − 6 · 21
8 3 · (6, 2, 2) −189 = −3 · 63
9 6 · (6, 4, 0), (4, 4, 4) 85 = 6 · 35 − 125

and a Cartan–Killing form with no relative scaling of the two a1 summands, so that the algebra
has an S2 group of diagram automorphisms.

Let (j, k) denote the irrep of dimension (j + 1)(k + 1), so that ad = (2, 0) ⊕ (0, 2). We
list in table 8 irreps of a1 ⊕ a1 with integer eigenvalues n of the quadratic Casimir operator,
with dn(6) alongside for comparisons of the type systematically made in previous cases.

The entries for c(2) = 5 and c(2) = 8 explain the (D − 6) factors in d5(D) and d8(D),
and all the other entries follow precisely a now familiar pattern. Only one entry needs any
comment:

d6(6) = 11 = 25 − 2 · 7 (22)

where 25 = dim(4, 4), 7 = dim(6, 0) = dim(0, 6).
We also note that all the irreps that feature here are either self-conjugate or else occur as

conjugate pairs, as the S2 invariance of ad requires.

4.2. a1 ⊕ a1 ⊕ a1

In this case we use as Cartan matrix twice the unit matrix, again with no relative scales, so
that the algebra has a group S3 of diagram automorphisms. Table 9 displays data about all
the irreps with integral values of the Casimir operator. The notation (j, k, l) denotes the irrep
with dimension (j + 1)(k + 1)(l + 1), so that ad = (2, 0, 0) ⊕ (0, 2, 0) ⊕ (0, 0, 2). To keep
the displays as brief as is reasonable, the notation r · (a, b, c) denotes the direct sum of all r
distinct permutations of (a, b, c). In view of the automorphism group S3, we may have r = 3
and r = 6. Again we can check that all the data conform to the expected pattern.
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4.3. a1 ⊕ a1 ⊕ a1 ⊕ a1

This example was treated to see one further automorphism group at work. But few surprises
were expected or found. Everything is in full accord with expectation. We do not display the
data that would make a table like tables 8 and 9, but note only the situation for d9(12). The
set of irreps, in notation similar to that used in previous subsections, that have c(2) = 9 is

12 · (6, 4, 0, 0), 4 · (4, 4, 4, 0), 4 · (7, 1, 1, 1), 4 · (6, 2, 2, 2) (23)

with dimensions 12 · 35, 4 · 125, 4 · 64, 4 · 189, and we have

d9(12) = −836 = 12 · 35 − 4 · (189 + 125). (24)

We note that the resolution (24) does not employ the irreps 4 · (7, 1, 1, 1), but such an omission
is also familiar in previous cases. There is some curious numerology in the n = 9 case:
64 = (189 − 125), and similar things are seen for lower n cases.

But we leave the analysis here, without including much additional data with features that
are of a qualitatively similar nature to what has been presented. The fact, however, is that
everything follows a coherent if far from understood pattern.

5. Conclusion

We have extended the dimension formulae of [8] for a particular family up to the ninth power
of the adjoint representation. The formulae (11)–(15) describe a further striking uniformity of
the Lie algebras of the exceptional series and our results of sections 3 and 4 indicate even a
uniformity beyond that. The formulae were obtained by inspection of a large amount of data
from tables and from computer calculations and finally by a considerable amount of trial and
error until we had found the appropriate rules that give rise to ‘simple’ formulae. The fact
that ‘easy’ formulae such as (11)–(15) with coefficients smaller than a few thousand give rise
to integers up to 16 digits which precisely correspond to dimensions of representations of the
exceptional Lie algebras, deserves to be seen as of real significance.

We conclude by listing some particular observations and first ideas that come to mind.

• The formulae (11)–(15) for dj (D) are polynomials in D = dim g. From [8], we might
have expected only rational functions in α, m or D. In particular, dim Yj in the notation of
[8] (Yj is the highest weight component of the jth totally symmetric tensor power of ad)
is not a polynomial in D.

• With the rational functions of [8], one can search for those values of the parameter α for
which the result is an integer and thus obtain a list of all algebras that conform to the
family pattern. In our case, however, the formulae for dj (D) give integer results for any
integral D.

• Whenever the dimension formula ceases to give a strictly positive answer and ad∧j

does not contain any representation of the desired c(2), we can successfully describe the
phenomenology of the situation, but do not have a satisfactory explanation of why it
occurs.

• The leading coefficient of the formula for dj (D) is 1/j !. This looks like a growth rate of
the dimension dj (D) of the family member Xj if the dimension D of the underlying Lie
algebra g tends to infinity.

• Our data confirm that the dimension formulae extend to other simple Lie algebras not in
the family F and beyond that also to some non-simple Lie algebras. A particularly strong
indication for this is the fact that the algebras b2 and a1 ⊕ a1 ‘explain’ some of the integer
roots of the polynomials (11), (12) and (14).
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It is an interesting question as to whether one can identify for each linear factor (D − m)

of the dimension formulae dj (D) a Lie algebra of dimension m for which there exists no irrep
with c(2) = j . For large j , however, there is hardly any simple Lie algebra other than a1. It is
therefore crucial to go beyond simple Lie algebras and to include more examples in order to
prove or disprove the conjecture. In this context, it is a striking observation that d9(D) of (15)
has so many linear factors.
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